BECURITY INFORMATION Copy 6 RM L51L17 # RESEARCH MEMORANDUM AN INVESTIGATION OF A SUPERSONIC AIRCRAFT CONFIGURATION HAVING A TAPERED WING WITH CIRCULAR-ARC SECTIONS AND 40° SWEEPBACK ESTIMATED DOWNWASH ANGLES DERIVED FROM PRESSURE MEASUREMENTS ON THE TAIL AT MACH NUMBERS OF 1.40 AND 1.59 By Frederick C. Grant and John P. Gapcynski Langley Field, Va. REFERENCE CLASSIFIED DOCUMENT OF TO BE TAKEN FROM THIS ACCURA This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to unsubstrate derson is nonliking the law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON March 10, 1952 NACA LIBRARY LANGLEY AERONAUTICAL LABORATORS LANGLEY FIRE VA. CLASSIFICATION CITATION NACA RM L51L1 ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM AN INVESTIGATION OF A SUPERSONIC AIRCRAFT CONFIGURATION HAVING A TAPERED WING WITH CIRCULAR-ARC SECTIONS AND 40° SWEEPBACK ESTIMATED DOWNWASH ANGLES DERIVED FROM PRESSURE MEASUREMENTS ON THE TAIL AT MACH NUMBERS OF 1.40 AND 1.59 By Frederick C. Grant and John P. Gapcynski #### SUMMARY From an analysis of pressures measured on the horizontal tail of a supersonic aircraft configuration in the Langley 4- by 4-foot supersonic tunnel at Mach numbers of 1.40 and 1.59 estimates of downwash angle in the plane of the tail are obtained for the complete model and the model less the wing. These results are compared with an approximate application of linearized theory and, where appropriate, with force-tests results for the same configuration. The downwash angles obtained from the pressure measurements were found to be everywhere greater than those of the theory. This appears to be due largely to the neglect of the flow field produced by the vertical tail. There was reasonable agreement in the average rate of change of downwash angle with angle of attack with the exception of those values obtained nearest the vertical tail. Both the pressure data and the theoretical results indicate that about half of the total rate of change of downwash angle with angle of attack is due to the wing at a Mach number of 1.40. At a Mach number of 1.59, theory indicates the same trend. Experimentally at M=1.59, however, pressure downwash angles show a somewhat smaller wing contribution to the rate of change of downwash angle with angle of attack, while on the other hand, force results at the same Mach number show a greater wing contribution. #### INTRODUCTION A knowledge of the downwash field at the tail of a supersonic aircraft configuration is essential to the determination of the static longitudinal stability of the aircraft. Most of the supersonic downwash field measurements have been made behind isolated wings as in references 1 to 5. References 1 to 3 contain measurements of the downwash field at M = 1.53 for rectangular, triangular, and swept wings, respectively. Reference 4 presents field measurements behind a rectangular wing at M = 2.41 and reference 5 gives values behind a trapezoidal wing at M = 1.91. In reference 6, over-all downwash values at the tail as derived from force-test data are given for a rectangular wing and tail and body combination at M = 1.92. Force-test downwash values for the 40° swept-wing and swept-tail configuration of this paper are given in reference 7 for M = 1.40 and reference-8 for M = 1.59. Linearized solutions for the downwash fields of wings of various shapes may be found in the works of Lagerstrom and Graham (references 9 and 10) who use the method of superposition of conical flow solutions; Lomax and Sluder (reference 11) who use a surface of potential discontinuity formed by a distribution of doublets; and Mirels and Haefeli (reference 12) who use the discontinuity formed by a distribution of vortices. The method of reference 12 was used for the wing of the configuration of this paper. The flow fields over bodies of revolution may be calculated by the method of characteristics as discussed in reference 13 for 0° angle of attack and in reference 14 for angles of attack other than 0°. Linearized theory calculations for corresponding attitudes may be made by the methods of references 15 and 16 which were used for the calculation of the body downwash fields in this paper. The tail data used in this paper were taken in the course of the body and wing pressure tests reported in references 17 to 20. The estimated downwash angles given in this paper are supplementary results of the tests on a supersonic aircraft configuration having a 40° sweptback wing at Mach numbers of 1.40 and 1.59. By use of the pressure measurements on the horizontal tail surfaces the effective downwash angles at the tail have been approximated by determining the tail incidence angles for which the lifting pressure vanished. Results are given for the complete configuration and for the model less the wing. The results are compared with an approximate application of linear theory calculations and with downwash angles derived from force tests (references 7 and 8) on the same configuration. The complexity of the configuration and the approximate nature of the pressure downwash angles to which the theory is compared do not justify a more complete theoretical treatment. #### SYMBOLS # Free-stream conditions: ρ mass density of air V airspeed a speed of sound in air M Mach number (V/a) q dynamic pressure $\left(\frac{1}{2}\rho V^2\right)$ p static pressure ## Horizontal-tail geometry: S area b span c chord parallel to free stream at any spanwise station c' chord of orifice plane normal to quarter-chord line x chordwise distance from airfoil leading edge x' chordwise distance from airfoil leading edge in plane normal to quarter-chord line c average chord (S/b) y spanwise distance from plane of symmetry of model #### Pressure data: pl local static pressure P pressure coefficient $\left(\frac{p_l - p}{q}\right)$ ΔP lifting-pressure coefficient $(P_L - P_U)$ # Downwash determination: angle of attack of fuselage center line (positive up), degrees it tail incidence angle relative to fuselage center line (positive up), degrees € downwash angle at tail (positive down), degrees Δc_n average lifting-pressure coefficient—on chord segment (positive up) between 15- and 45-percent constant chord lines $$\left(\frac{1}{0.45 - 0.15} \int_{0.15}^{0.45} \Delta Pd(x/c) \text{ or } \int_{0.41}^{0.41} \Delta Pd(x/c) \right)$$ $\frac{1}{0.41 - 0.13} \int_{0.13}^{0.41} \Delta Pd(x'/c')$ ACN average lifting-pressure coefficient on spanwise strip (positive up) between 15- and 45-percent constant chord lines $$\left(\frac{2}{b} \int_0^{b/2} \left(\Delta c_n \frac{c}{\overline{c}} \right) dy \right)$$ # Subscripts: L Iower surface U upper surface, Tunnel. - The data presented in this paper were obtained in the Langley 4- by 4-foot supersonic tunnel at Mach numbers of 1.40 and 1.59. A detailed description of this tunnel may be found in reference 17. Model.- The sting-mounted steel test model (fig. 1) was built to the dimensions given in figure 2. The afterpiece shown in figure 1 is integral with the model and forms a part of the sting as shown in figure 3. The detachable wing of the model had 40° of sweepback at the quarter-chord line, aspect ratio 4, taper ratio 0.5, and 10-percent-thick circular-arc sections normal to the quarter-chord line. The horizontal tail had 40° sweepback at the quarter-chord line, aspect ratio 3.72, taper ratio 0.5, and NACA 65-008 sections normal to the quarter-chord line. The tail incidence angles were set at the root by means of machined filler blocks which fitted around the horizontal tail and into a cutout in the rudder. The pivot axis for the horizontal tail passed through the 73-percent point of the root chord. There were 35 orifices arranged in three vertical planes on the left half of the horizontal tail. The number and location of the orifices were limited by the thinness of the tail. The position of each orifice is given in table I, while in figure 4 are shown the positions of the orifice planes and the spanwise strip used in the analysis of the pressure data. #### TESTS Experimental data were obtained at Mach numbers of 1.40 and 1.59 and Reynolds numbers (based on the wing mean aerodynamic chord) of 600,000 and 575,000, respectively, for the complete model and the model less the wing. The angle-of-attack range of the complete model was -3° to 8° at M = 1.40 and -5° to 10° at M = 1.59. The model less the wing was tested for an angle-of-attack range of -5° to 4° at M = 1.40 and -5° to 10° at M = 1.59. The tail incidence angles for each angle of attack are shown in tables I and II. The data were obtained for stagnation conditions of: pressure, 0.25 atmosphere; temperature, 110° Fahrenheit; dew points of -30° Fahrenheit at M = 1.40, and -35° Fahrenheit at M = 1.59. #### PRECISION OF TESTS AND RESULTS Calibration data for the test section at Mach number 1.40 may be found in reference 18 and at Mach number 1.59 in reference 17. Since the gradients of flow parameters are small in the vicinity of the model, no corrections have been made to the data. The estimated extreme variations of M and P through the test section are ± 0.01 . The estimated error in P at a given point of the test section is ± 0.003 . The accuracy attained in setting the angles α and i_t is estimated as $\pm 0.02^{\circ}$ and $\pm 0.05^{\circ}$, respectively. The estimated maximum error in ϵ due to the local variation of P, to the setting of α and i_{t} and to changes in the fairing of the pressure distributions and the loading curves of the spanwise strip is $\pm 0.25^{\circ}$. ## Presentation and Analysis of Experimental Data In tables I and II, the data obtained for the horizontal tail are given in pressure-coefficient form. In each orifice plane, point
downwash angles were obtained from the data by determining the tail incidence angles for which the lifting pressure vanished at the 15-percent constant chord line. At these incidence angles, the chord line of the orifice plane was considered to be alined with the flow at the leading edge in the orifice plane and the downwash angle was found from the relation $\epsilon = \alpha + i_{\rm t}$. Curves of the variation of this point downwash angle with angle of attack are given in figure 5 for the model at M = 1.40 and 1.59, with and without the wing. The point downwash angle described is not the angle of downward deviation of the flow in the absence of the tail, which is the usual concept of a downwash angle. The fact that each point of analysis is behind a detached shock and includes a considerable length of leading edge in its fore Mach cone makes the point downwash analysis yield a value of downwash angle determined by local conditions in the fore Mach cone. In addition, the interference effects of the body-wing-rudder combination may vary the flow field at the tail. The point downwash angles derived from the pressure analysis are to be considered then as approximations to the usual point downwash angles and not identical with them. The reason the values are considered as approximations to the downwash angle and as such compared with theory is that the horizontal tail is a comparatively large distance above the trailing-vortex sheet from the wing and the part of the tail in the fore Mach cone is subject to a comparatively uniform flow. The area downwash angles are presented in figure 6. To find the area downwash angles, the normal-force coefficient Δc_n on a chord segment between the 15- and 45-percent constant chord lines, was found in each orifice plane. These normal-force coefficients were plotted against the spanwise station as shown in figure 7 and were then integrated. The vanishing of this integral ΔC_N with tail incidence angle was taken to indicate an average heading of the local air stream for the strip bounded by the 15- and 45-percent constant chord lines. A sample variation of ΔC_N with tail incidence angle is shown in figure 8 along with the derived area downwash angle. If sufficient orificies were available over the entire tail, the area downwash angles would be those corresponding to the vanishing of the tail normal-force coefficient. #### THEORETICAL ANALYSIS Theoretical calculations of the downwash field in the region of the tail of the model were made for the fuselage alone (less canopies) and the wing alone. Point downwash values were obtained at the same chordwise locations, and chordwise and spanwise integrations were performed for the same region of the tail used in the analysis of the experimental data. For the case of the wing-fuselage combination, the values of the downwash were approximated by superposition of the wing and body values. The body downwash values were determined from linear calculations (references 15 and 16) of the flow field about the fuselage in the vicinity of the tail. The wing downwash values were calculated by the method of reference 12. This analysis (reference 12) is based on a line vortex located at a straight-line approximation to the locus of the centers of pressure of the individual wing stations. For the present application, this straight-line approximation intersected the root chord at the 50-percent station for both Mach numbers, and the tip chord at the 35-percent station for a Mach number of 1.59, and the 10-percent station for a Mach number of 1.40. The theoretical span loadings used to establish both the position and magnitude of the line vortex were obtained from references 19 and 20 for Mach numbers of 1.59 and 1.40, respectively. The downwash calculations were made for a fixed-tail-plane position relative to the plane of the wing at an angle of attack of 0°. No allowance was made for either the drop in tail position as the wing angle of attack was increased, or the displacement of the trailing-vortex sheet. Actually, the vortex sheet will displace downward as the angle of attack is increased and the tail position drops so that the two effects will tend to cancel each other. The rolling up of the trailing-vortex sheet has a negligible effect on the downwash angles for this configuration because of the location of the horizontal tail. The short-span-tail plane is not far enough downstream of the wing tips to be affected by the rolling-up process which starts at the tips (reference 21). #### RESULTS AND DISCUSSION Variation of point downwash angles with α . In figure 5, for both the complete model and the model less the wing, the variations with angle of attack of the point downwash angles derived from the pressure data are presented along with corresponding theoretical variations. All the point downwash values are somewhat higher than the corresponding theory for both the complete model and the model less wing. Considering the influence of the vertical tail, which is neglected in the theory, helps to account for this difference. The velocity increase at the horizontal-tail location, caused by the vertical-tail thickness, occurs mostly normal to the leading edge and since the vertical tail has a sweptback leading edge, it tends to increase the experimental downwash angles. If average slopes are taken over the range of angles of attack for which there are data, the $d\varepsilon/d\alpha$ as indicated by the point downwash-angle variations are much the same as those indicated by theory, except in the inboard plane for the model less the wing. At M = 1.59, (fig. 5(b)), the point downwash-angle variation for the inboard plane indicates a somewhat higher $d\varepsilon/d\alpha$ than the theory. The difference curves of figure 5 represent the downwash angle due to the addition of the wing. Although they are subject to twice the error of either of the other curves taken alone, the agreement in angle and slope is good for the two outboard stations at both Mach numbers. At the inboard station at M=1.59, the large body contribution indicated by the pressure downwash leads to a negative $d\varepsilon/d\alpha$ over the positive α range and the largest disagreement with theory. Variation of downwash angle with spanwise position. In the tail span-loading curves of figure 7, there is, for angles of attack greater than zero, an evident gradient along the span in the it required for zero Δc_n . If the vanishing of Δc_n is taken as the criterion for alinement of the chord of a spanwise station with the local flow, and the downwash angle computed as $\epsilon = \alpha + it$, an increase in downwash angle from the outboard to the inboard orifice planes is indicated. A larger gradient is shown for the model less the wing than for the complete model, indicating a large body contribution to $d\epsilon/d\alpha$. Variation of area downwash angle with α . The area downwash angles for the complete model and the model less wing, given in figure 6, are somewhat higher in every case than the values of the corresponding theory. The previously mentioned influence of the vertical tail helps to account for this difference. The agreement in $ds/d\alpha$ for the complete model and the model less the wing is good throughout except for the complete model at M=1.59 in the negative angle-of-attack range. In the difference curves of figure 6, the variation of the difference between the downwash values obtained for the complete model and the model-less-wing configuration is compared with the variation of theoretical wing-alone values. This comparison is of uncertain significance because of the unknown magnitude of the interference effects due to the addition of the wing. The area downwash difference variations at M=1.40 agree very closely with theory while at M=1.59 they indicate a negligible $d\varepsilon/d\alpha$ as compared with theory. Comparison of area downwash angles with force-test results.- The downwash curves from the pressure analysis and the theory are compared with the results of force tests in figure 9. The force-test downwash angles were obtained by determining the tail incidence angle for which the addition of the tail had no effect on the pitching moment. From the force tests it was also found that the downwash angles corresponding to the vanishing of the pitching-moment increment were essentially the same as those corresponding to the vanishing of the normal-force coefficients. Hence the area downwash from the pressure tests should be an approximation to the force results. For the complete configuration at both Mach numbers, the pressure data, though indicating slightly lower downwash angles than the force data, show essentially the same values of $d\varepsilon/d\alpha$, values which agree reasonably well with theory. Similar agreement between the pressure data and theory is shown for the model-less-wing configuration at M = 1.40. No force data are available for the model-less-wing CONTRACTOR configuration at M=1.40. For M=1.59 the force and pressure data show dissimilar trends for the model-less-wing configuration, the pressure data showing a considerably higher $d\epsilon/d\alpha$ value. The theoretical value is between both sets of experimental data. At both Mach numbers, the theoretical results agree that the modelless-wing configuration contributes about the same $d\varepsilon/d\alpha$ as the wing alone. The pressure results at M=1.40 credit the model-less-wing configuration with about the same $d\varepsilon/d\alpha$ as the wing, but at M=1.59, the pressures indicate that the contribution of the model less wing is considerably more than half of the total $d\varepsilon/d\alpha$. The only force-test results at M=1.59 indicate a small body contribution to the total $d\varepsilon/d\alpha$. ### CONCLUDING REMARKS From an analysis of pressures measured on the horizontal tail of a supersonic aircraft
configuration in the Langley 4- by 4-foot supersonic tunnel at Mach numbers of 1.40 and 1.59, estimates of downwash angle in the plane of the tail are obtained for the complete model and the model less the wing. These results are compared with an approximate application of linearized theory and, where appropriate, with force-test results for the same configuration. The pressure downwash angles are everywhere greater than those of the theory. This is probably due largely to the neglect of the flow field produced by the vertical tail. For the outboard stations, there is reasonable agreement in the average rate of change of downwash angle with angle of attack. The pressure and theoretical results indicate that about half the total rate of change of downwash angle with angle of attack is due to the wing at a Mach number of 1.40. At a Mach number of 1.59, theory indicates the same trend. Experimentally, however, pressure downwash angles show a somewhat smaller wing contribution to the rate of change of downwash angle with angle of attack, while on the other hand, forcetest results at the same Mach number show a much greater wing contribution. Iangley Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va. #### REFERENCES - 1. Perkins, Edward W., and Canning, Thomas N.: Investigation of Downwash and Wake Characteristics at a Mach Number of 1.53. I Rectangular Wing. NACA RM A8L16, 1949. - 2. Perkins, Edward W., and Canning, Thomas N.: Investigation of Downwash and Wake Characteristics at a Mach Number of 1.53. II Triangular Wing. NACA RM A9D20, 1949. - 3. Perkins, Edward W., and Canning, Thomas N.: Investigation of Downwash and Wake Characteristics at a Mach Number of 1.53. III Swept Wings. NACA RM A9K02, 1950. - 4. Adamson, D., and Boatright, William B.: Investigation of Downwash, Sidewash, and Mach Number Distribution behind a Rectangular Wing at a Mach Number of 2.41. NACA RM L50G12, 1950. - 5. Cummings, J. L., Mirels, H. and Boughman, L. E.: Downwash in the Vortex Region behind a Trapezoidal-Wing Tip at Mach Number 1.91. NACA RM E9H15, 1949. - 6. Ellis, Macon C., Jr., and Grigsby, Carl E.: Aerodynamic Investigation at Mach Number 1.92 of a Rectangular Wing and Tail and Body Configuration and Its Components. NACA RM 19128a, 1950. - 7. Spearman, M. Leroy: An Investigation of a Supersonic Aircraft Configuration Having a Tapered Wing with Circular-Arc Sections and 40° Sweepback. Static Longitudinal Stability and Control Characteristics at a Mach Number of 1.40. NACA RM 19108, 1950. - 8. Spearman, M. Leroy, and Hilton, John H., Jr.: An Investigation of a Supersonic Aircraft Configuration Having a Tapered Wing with Circular-Arc Sections and 40° Sweepback. Static Longitudinal Stability and Control Characteristics at a Mach Number of 1.59. NACA RM L50E12, 1950. - 9. Lagerstrom, P. A., Graham, Martha E., and Grosslight, G.: Downwash and Sidewash Induced by Three-Dimensional Lifting Wings in Supersonic Flow. Rep. No. SM-13007, Douglas Aircraft Co., Inc., April 14, 1947. - 10. Lagerstrom, P. A., and Graham, Martha E.: Methods for Calculating the Flow in the Trefftz-Plane behind Supersonic Wings. Rep. No. SM-13288, Douglas Aircraft Co., Inc., July 28, 1948. - 11. Lomax, Harvard, and Sluder, Ioma: Downwash in the Vertical and Horizontal Planes of Symmetry behind a Triangular Wing in Supersonic Flow. NACA TN 1803, 1949. - 12. Mirels, Harold, and Haefeli, Rudolf C.: Line-Vortex Theory for Calculation of Supersonic Downwash. NACA Rep. 983, 1950. (Formerly NACA TN 1925.) - 13. Ferri, Antonio: Application of the Method of Characteristics to Supersonic Rotational Flow. NACA Rep. 841, 1946. (Formerly NACA TN 1135.) - 14. Ferri, Antonio: The Method of Characteristics for the Determination of Supersonic Flow over Bodies of Revolution at Small Angles of Attack. NACA TN 1809, 1949. - 15. Von Karman, Theodor, and Moore, Norton B.: Resistance of Slender Bodies Moving with Supersonic Velocities with Special Reference to Projectiles. Trans. A.S.M.E., vol. 54, no. 23, Dec. 15, 1932, pp. 303-310. - 16. Tsien, Hsue-Shen: Supersonic Flow over an Inclined Body of Revolution. Jour. Aero. Sci., vol. 5, no. 12, Oct. 1938, pp. 480-483. - 17. Cooper, Morton, Smith, Norman F., and Kainer, Julian H.: A Pressure-Distribution Investigation of a Supersonic Aircraft Fuselage and Calibration of the Mach Number 1.59 Nozzle of the Langley 4- by 4-Foot Supersonic Tunnel. NACA RM 19E27a, 1949. - 18. Hasel, Lowell E., and Sinclair, Archibald R.: A Pressure-Distribution Investigation of a Supersonic-Aircraft Fuselage and Calibration of the Mach Number 1.40 Nozzle of the Langley 4- by 4-Foot Supersonic Tunnel. NACA RM 150B14a, 1950. - 19. Cooper, Morton, and Spearman, M. Leroy: An Investigation of a Supersonic Aircraft Configuration Having a Tapered Wing with Circular-Arc Sections and 40° Sweepback. A Pressure-Distribution Study of the Aerodynamic Characteristics of the Wing at Mach Number 1.59. NACA RM 150C24, 1950. - 20. Smith, Norman F., Kainer, Julian H., and Webster, Robert A.: An Investigation of a Supersonic Aircraft Configuration Having a Tapered Wing with Circular-Arc Sections and 40° Sweepback. A Pressure-Distribution Study of the Aerodynamic Characteristics of the Wing at Mach Number 1.40. NACA RM L51C06, 1951. 21. Spreiter, John R., and Sacks, Alvin H.: The Rolling Up of the Trailing Vortex Sheet and Its Effect on the Downwash behind Wings. Jour. Aero. Sci., vol. 18, no. 1, Jan. 1951, pp. 21-32, 72. TABLE I.- PRESSURE COEFFICIENTS ON HORIZONTAL TAIL FOR MODEL LESS ITS WING (a) M = 1.40 | Plane A | ď | | - | 5 | | 0 | | 2 | | 14 | | | | | | |---------|---|--|--|--|---|--|--|---|---|---|---|--|--|--|--| | | 1 _t | | 2 | 74 | 2 | 4 | -2 | 0 | -2 | 0 | 2 | | | | | | | Upper-
surface
position,
x/c | 0.102
.190
.279
.388
.491 | 0.265
.142
.064
.006
038 | 0.200
.077
.007
042
083 | 0.076
037
098
136
166 | -0.002
100
155
194
221 | 0.167
.049
017
061
097 | 0.085
030
088
127
154 | 0.089
024
082
121
150 | -0.005
101
158
194
219 | -0.106
175
221
251
276 | | | | | | | Lower- surface position, x/c | .124
.221
.327
.393
.486 | 205
230
257
276
304 | 111
152
188
211
252 | .035
031
081
111
164 | .108
.041
017
050
110 | 050
103
149
174
221 | .039
025
078
108
163 | .037
028
080
111
165 | .122
.050
012
048
108 | .201
.127
.058
.018 | | | | | | | | • | · · · · · · | | | | | | | | | | | | | | | ď | | - | 5 | | 0 | | 2 | | 4 | | | | | | | Plane B | 1 _t | | 2 | 4 | 2 | 4 | -2 | 0 | - 2 | 0 | 2 | | | | | | | Upper-
surface
position,
x'/c' | 0.084
.168
.260
.353
.442
.539
.786 | 0.237
.131
.058
007
071
078
193 | 0.171
.068
.003
051
116
111 | 0.065
034
084
169
163
262 | -0.005
093
146
172
212
191
291 | 0.156
.056
006
050
117
120
218 | 0.075
019
069
107
166
154
257 | 0.086
008
058
097
150
149
246 | 0.000
086
133
158
200
180
285 | -0.090
153
196
222
248
213
309 | | | | | | | Lower-
surface
position,
x'/c' | .106
.199
.238
.340
.428
.530
.596
.733 | 213
233
241
285
320
359
377
370 | 122
174
186
235
274
320
342
361 | .005
075
097
163
221
266
292
323 | .075
011
036
105
163
219
243 | 072
142
158
224
279
323
334
306 | .009
075
097
169
221
226
290
323 | .008
077
099
172
235
277
299
321 | .085
010
037
114
172
226
254
293 | .157
.062
.036
045
112
178
211
255 | <u>a</u> | | - | 5 | (|) | | 2 | | 4 | , | | | | | | - | 1 _t | | 2 | 4 | 2 | 4 | -2 | 0 | -2 | 0 | 2 | | | | | | Plane C | Upper-
surface
position,
x/c | 0.091
.185
.288
.395
.492 | 0.183
.080
.042
020
081 | 0.135
.027
006
065
121 | 0.084
037
053
106
160 | 0.030
089
100
143
196 | 0.172
.056
.018
040
101 | 0.111
005
031
096
146 | 0.136
.020
017
069
130 | 0.072
048
073
122
177 | 0.004
114
122
166
210 | | | | | | | Lower-
surface
position,
x/c | .122
.188
.288
.392
.489 | 120
183
213
268
317 | 083
131
163
221
277 | 020
094
139
191
240 | .045
028
078
140
194 | 105
189
211
251
293 | 045
127
150
201
248 | 066
161
180
218
262 | 004
103
119
172
218 | .065
024
053
119
175 | | | | | TABLE I.- PRESSURE COEFFICIENTS ON HORIZONTAL TAIL FOR MODEL LESS ITS WING - Concluded (b) M = 1.59 | 1 | | | | | | | t | | | | | | | | | | | | |---------|---|--|---|--|--|--|--
---|----------------------------------|--|-----------------------------------|---|--|--|---|---|--|--| | | α | | | .5 | - 3 | -2 | |) | 2 | | 4 | | 6 | | 8 | | 10 | | | | 14 | , | 2 | 4 | 2 | . 2 | 2 | 4 | 2 | - 2 | 0 | 2 | 2 | -4 | -2 | 2 | 2 | | | Plane A | Upper-
surface
position,
x/c | 0.102
.190
.279
,388
.491 | .134
.057
.002 | 0.184
.067
005
054
093 | 0.203
.086
.012
038
077 | .053
017 | 010
071
113 | 0.026
078
138
175
204 | 060
119
158 | 034
080 | 0.047
063
125
161
189 | -0.030
119
174
210
221 | -0.097
169
215
244
269 | 0.092
018
078
115
148 | 0.033
072
127
163
191 | -0.166
224
263
287
307 | -0.163
119
116
101
068 | | | | Lower-
surface
position,
x/c | .124
.221
.327
.393
.486 | 205
227
254
271
303 | 111
149
185
207
249 | 157
190
210 | 072
119
160
186
230 | .000
060
107
135
184 | .068
.005
048
078
131 | .064
002
053
086
140 | 095 | .029
037
089
120
174 | .121
.052
008
044
100 | .182
.111
.047
.006 | .014
051
100
131
185 | .075
.006
049
083
140 | .236
.157
.089
.048
019 | .285
.201
.127
.087
.020 | | | Ī | α | | | 5 | - 3 | - 2 | |) | 2 | | <u>+</u> | | 6 | _ | 8 | | 10 | | | Plane B | | , | 2 | 14 | 2 | 2 | 2 | l ₊ | 2 | -2 | 0 | 2 | 2 | -4 | -2 | 2 | 2 | | | | Upper-
surface
position,
x'/c' | 0.084
.168
.260
.353
.442
.539
.786 | 0.230
.125
.051
011
080
087
196 | 0.169
.064
003
061
121
121
232 | 0.180
.076
.009
044
110
111 | .047
016
066
127
127 | 010 | 0.024
070
127
161
207
188
295 | 055
111
146
191
177 | 0.134
.033
026
073
131
130
235 | 057 | -0.030
111
161
194
230
201
306 | -0.089
155
199
230
263
221
312 | 0.086
010
059
103
158
159
259 | | -0.155
204
237
262
293
241
318 | -0.205
159
138
146
105
144 | | | E4 | Lower-
surface
position,
x'/c' | .106
.199
.238
.340
.428
.530
.596
.733 | 216
238
243
287
325
362
361 | 122
176
191
238
276
324
343
368 | 182 | 155
171
227
276
318
338 | 029
105
124
190
239
283
305
335 | .040
040
061
133
189
238
265
304 | 149
196
246
271 | 139
158
224
277
318 | 090
114 | .080
011
036
100
158
219
248
288 | .041
.017
064
129 | 021
109
130
200
251
287
304
289 | .036
057
079
151
199
246
273
296 | .185
.087
.056
022
093
160
191
230 | .237
.135
.102
.010
062
123
129
104 | | | ſ | -5
4 | - 3 | -2 | |) | 2 | - | 4 | | 6 | -4- | 8 | | 10 | | | ł | i | $\neg \neg$ | 2 | _ | 2 | 2 | 2 | | 2 | -2 | 0 | 2 | 2 | | -2 | 2 | 2 | | | Plane C | Upper-
surface
position,
x/c | 0.091
.185
.288
.395
.492 | 0.173
.066
.027
032
092 | 0.123
.012
028
077
133 | 0.137
.023
011
069
124 | 027
083 | 0.085
041
060
113
164 | 0.031
095
109
156
205 | 080
096 | 0.132
.011
023
066
128 | 0.056
070
089
152
191 | 0.000
122
131
161
215 | -0.039
152
163
188
235 | 0.094
012
048
109
164 | 054
085
122 | -0.088
182
191
216
259 | -0.118
196
205
226
219 | | | A | Lower-
surface
position,
x/c | .122
.188
.288
.392
.489 | 144
189
222
274
321 | 115
149
171
227
283 | 102
168
205
257
301 | 154
190
243 | 216 | .012
059
109
169
213 | 130
183 | 190
222
265 | 054
144
182
232
274 | .027
067
111
164
210 | 052
080
136 | 115
202
197
224
260 | 149
188 | .070
002
030
093
146 | .130
.065
.024
066
116 | | | • | | | | | | | | | | | | | | | | ~~ | CA . | | #### TABLE II.- PARSHER CONFFICIENTS OF SOCIEDIAL TAIL FOR CONFINE MODIL | | 1-1 | - | - | 1 | |--|-----|---|---|---| | | | | | | | | | | | | | | ·-, | | | | | | | | | | | | | | | | | | |---------|---|--|--|--|--|--|--|---|--
---|---|---|---|---|--|---|---|---|--|--|---|---|---|--|--|--|--|--|--|--| | | a | | | | 3 | | | | 0 | | | | | 8 | | | | | à. | | | | 8 | | | | | | | | | | i | t | 4 | đ | 2 . | . 4 | 4 | 4 | 0 | 5 | 4 | -6 | -4 | 2 | 0 | 2 | -6 | 4 | q | 0 | 2 | h | 1 | 9 | O | | | | | | | Phene A | . Ugger-
surface
position,
x/o | 0.102
.190
.279
.388
.491 | 0.353
.239
.161
.110
.063 | 0.283
.172
.097
.002
.010 | 0.220
.107
.040
001
039 | 0.159
.001
013
053 | 0.321
.210
.137
.088 | 0.479
.150
.078
.032 | 96.3
78.5
98.5
98.5
98.5
98.5 | 0.120
.021
037
074
106 | 0.046
039
090
123
131 | 0.327
.215
.143
.092
.050 | 0.247
.134
.069
.088 | 0.194
.083
.019
019 | 0.118
.015
013
079
111 | 0.056
047
096
132
157 | 0.260
.147
.079
.037
.008 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0.129
.027
033
070
100 | 0.099
085
098
131
160 | -0.046
112
156
183
207 | 0.118
0.018
042
104 | 0.031
047
094
124
150 | -0.047
111
152
176
197 | -0.138
179
213
235
253 | | | | | | | | lower-
surface
position,
x/o | 194
197
197
198
198
198 | 177
198
222
236
262 | 105
156
168
106
207 | 082
066
106
187
165 | .016
000
077
083
126 | 103
132
161
168
219 | - 0.99
- 0.90
- 1.50
- 1.50
- 1.50 | .031
027
072
099
140 | 195
- 643
- 655
- 655
- 655 | .164
.097
.041
.008
047 | 115
142
174
191
223 | 028
074
114
136
175 | .035
021
067
093
136 | .107
.039
-011
-042
094 | .176
.106
.047
.012 | 017
079
119
141
180 | 5855
585
595
1 | .15
.00
00
03
03 | 139
139
139
139
139
139
139
139
139
139 | .250
.172
.165
.68 | .119
.050
057
059 | .20
.135
.036
.086 | .259
.141
.072
.680 | .98
.49
.19
.19 | | | | | | | ŀ | • | | - | | 3 | | | - | 0 | | | | | 2 | ··· | | | | 4 | | | 8 | | | | | | | | | | Flane 3 | í | ŧ | -2 | 0 | 2 | à | 1 | -2 | 0 | 2 | 4 | -6 | ->- | -2 | 0 | 2 | -6 | 4 | -2 | 0 | 2 | -6 | -1 | -2 | 0 | | | | | | | | Upper-
surface
position,
x'/o' | 0.084
168
260
253
142
239
166 | 0.352
.225
.146
.089
.088
033 | 0.262
.157
.084
.033
036
074 | 0.199
.096
.091
017
070
113
173 | 0.140
.041
023
064
310
145
804 | 0.304
.198
.127
.071
.008
040 | 0.943
.137
.070
.092
096
088 | 0.173
.069
.067
-085
084
185 | 0.112
.018
043
050
121
151 | 0.043
037
093
128
165
187
237 | 0.312
.207
.133
.065
.020
037
103 | 0.23
129
064
066
- 059
- 055 | 0.183
.080
.088
.088
.074
 | 0.112
.016
043
079
123
153
210 |
0.186
042
097
130
167
184
437 | 0.248
.144
.077
.029
072
072 | 0.177
.076
.017
023
070
117
172 | 0.126
.030
068
062
103
139
199 | 0.042
037
090
134
160 | 0.089
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286
1.286 | 0.114
.023
.026
058
103
156
169 | 0.01
030
061
105
135
161
207 | -0.016
090
128
157
183
199
236 | -0,122
-,162
-,186
-,203
-,230
-,236
-,266 | | | | | | | | Lower-
surface
position,
x'/o' | 14833858E | -182
-215
-224
-254
-269
-303
-303 | 157 45 5 5 5 5 5 5 6 5 5 6 5 6 5 6 5 6 6 5 6 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | .024
046
062
121
177
224
243 | 116
158
169
212
256
271
272
276 | - 068
- 124
- 127
- 127 | 5894888 | - 000
- 000
- 000
- 100
- 100 | 188884188
19884188 | 128
171
163
229
275
275
273 | 50
11
12
126
25
25
26
25 | 358488888888888888888888888888888888888 | .06
09
09
10
16
26
26 | 子 50 50 7 5 7 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 56
-135
-135
-25
-25
-25
-25
-25
-25
-25
-25
-25
-2 | .051
072
139
196
270
255 | 653
653
653
653
633
633
633
633
633
633 | 158887554
5887554 | 26 15 15 15 15 15 15 15 15 15 15 15 15 15 | क्षेत्र ने व्यवस्थाति ।
इत्यास्थाति । | 174
073
046
- 039
- 171
- 195
- 186 | .218
.114
.082
09
084
176
274 | .284
.175
.142
.051
-,031
-,128
-,128 | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | 0 | | | | | 2 | | | | | . 4 | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | t | -2 | <u></u> | | <u> </u> | 4 | -2 | • | 2 | 4 | -6 | -4 | -9 | 0 | e | -6 | 4 | -2 | 0 | 2 | 6 | بد ا | -2 | 0 | | | | | | | Thus 0 | Upper-
surface
position,
x/o | 0.090
200
200
200
200
200
200
200
200
200 | 0.263
.146
.100
.057
alt | 0.204
.026
.046
.000 | 0.147
.031
.000
044
092 | 0.097
021
050
080 | 0.267
.151
.103
.047 | 0.214
.095
.050
.012 | 0.154
.036
.081
.089 | 0.095
085
080
080 | 0.040
065
088
J80
J60 | 0,293
,173
,120
,071
001 | 0.223
.307
.063
.004 | - 081
- 081
- 083 | 0.181
.008
089
079
123 | 0.053
052
074
105
165 | 0.256
.135
.033
.037 | 0.177
.076
.078
019
059 | 0.149
.035
052
059
100 | 0.083
089
066
188
144 | 0.00
00
106
133
181 | 0.187
.061
.033
026
077 | 0.135
.033
004
052
105 | 0.080
024
097
097 | | | | | | | | | Ioser-
surface
position,
x/e | .122
.126
.258
.309
.409 | 140
167
219
291 | 052
139
179
279 | 033
059
130
294 | .005
059
086
186 | 130
174
203
269 | 089
143
185
 | 019
099
144
285 | .047
057
084
29 | .092
.011
037 | 191
236
236
236 | 1114
160
190
260 | 051
115
167
231 | .018
073
119
198 | .087
015
066
151 | 160
223
226
277 | 075
131
171
29 | 007
005
144
409 | .068
043
100
174 | .137
.045
040 | 155
201
187 | 0 19
099
129
207 | .020
079
110
183 | .102
013
069 | | | | | | (b) N = 1.59 | | Œ | | -5 | | -3 | | -2 | | | 0 | | | £ | | | 4 | | | 6 | 8 | | | 10 | |------|---|--|--|--|--|--|---|--|---|--|---|---
--|---|---|---|---|---|--|--
---|---|--| | | 1. | t . | 4 | 0 | ē | Ą | 5 | -4- | -6 | 0 | 2 | Ħ | -2 | -6 | 1 | -6 | 0 | 2 | ቀ | -6 | + | -2 | -6 | | Ã. | Upper-
surface
position,
z/c | 0.102
.190
.279
.388 | 0.230
.109
.043
004 | 0.303
.183
.108
.057 | 0.238
.120
.052
.005 | 0.174
.057
004
050
079 | 0.205
.090
.026
020 | 0.330
.212
.136
.085 | 0.280
.161
.091
.041 | 0.214
.096
.035
010
044 | 0.149
.038
019
062
091 | 0.079
020
072
109
136 | 0.231
.112
.048
.004 | 99.
18.
18.
18.
18.
18.
18.
18.
18.
18.
18 | 0.831
.112
.047
.002 | 9 9 9 9 5
5 8 8 8 5 | ដូន្ទំនិទ្ធ | 0.025
060
110
146
169 | 0.258
142
027
-028 | 0.210
093
029
- 014 | 0.125
.014
044
084
113 | 0,076
020
074
111
137 | 0.163
.051
006
048
077 | | | Loren-
surface
position,
x/c | .124
.221
.327
.353
.486 | 050
094
133
154
190 | 123
148
181
199
226 | 047
087
126
147
183 | .018
034
079
103
142 | 007
097
099
121
159 | -,151
-,177
-,204
-,220
-,249 | 097
131
163
183
215 | .000
065
105
128
166 | .058
.002
015
071
115 | .120
.058
.005
.005
025 | 026
073
119
139
169 | 114
143
175
193
225 | 019
064
107
131
170 | .036
018
065
091
118 | .119
.019
004
034
084 | .180
.113
.053
.018
-039 | 048
089
126
149
186 | .008
014
091
115
156 | .086
.020
036
063
113 | .150
.079
.020
010
063 | .062
.002
051
080
128 | | | a | | -5 | | -3 | | -e | ·· | | 0 | | | £ | | ···· | , | | | 6 | | 8 | | 10 | | | 1. | | 4 | 0 | 2 | 4 | 2 | -Jt | -5 | 0 | 2 | 4 | -22 | -6 | 4 | -£ | 0 | 2 | -6 | -6 | -4 | -2 | -6 | | Plan | Upper-
surface
position,
z'/c' | 0.68 | 0.25
2.55
2.55
2.55
2.55
2.55
2.55
2.55 | 0.272
.168
.105
.041
023
068
143 | 0.207
.105
.042
006
064
105
176 | 0.148
.048
014
056
108
142
212 | 0.169
089
188
188
188 | 0.306
.201
.125
.067
.002
046 | 0.150
0.150
0.050
0.057
1.059 | 0.195
.095
.026
.021
076
115
182 | 0.13 ⁴
.035
.029
.070
.115
.146
.210 | 0.071
017
017
115
157
179
243 | 0.208
.108
.039
006
060
100
169 | 0.277
.173
.100
.047
013
059
131 | 0.209
.105
.037
068
063
100
171 | 0.161
.059
006
048
097
130 | 0.096
.004
058
097
139
165 | 0.025
053
107
144
185
201
257 | 0.237
.124
.064
.015
042
082 | 0.192
.090
.026
019
073
110
179 | 0.112
.016
.046
084
132
161 | 0.071
074
110
150
174
235 | 0.156
.056
005
045
094
129
195 | | | Lower-
surface
position,
x'/c' | .1998.399.595.53
.1999.399.595.55
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.399.595
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395
.1999.395 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 143
182
189
264
264
303
303 | 076
126
139
179
226
273
284
293 | 016
080
095
147
201
248
262
286 | - 099
- 199
- 160
- 160
- 187
- 187
- 189 | -170
-250
-250
-350
-350
-350
-350
-350
-350
-350
-3 | 1950 1950 1950 1950 1950 1950 1950 1950 | 3575 N | .047
.062
.129
.228
.244 | .07
.037
.037
.035
.128
.123
.239 |
\$6.19
\$1.19
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20
\$1.20 | - 180
- 180 | 653
126
126
266
266
266
266 | .000
057
158
209
264
286 | 5-59
- 589
- 589
- 585
- | .136
.049
.023
076
126
124
188
224 | - 064
- 139
- 154
- 219
- 261
- 301
- 293
- 269 | 033
104
121
105
240
266
299
260 | - 046
- 046
- 046
- 048
- 048 | .102
.007
017
094
155
198
241 | .019
067
089
158
212
258
266 | | Ī | | | | | | | | | | | | | 5 | | | | | | 6 | J | 8 | | 10 | | 1 | 4 | | -5
L | 0 | -3
2 | . | - <u>2</u> | | -e | • | 2 | L | | -6 | 7 | -2 | 0 | 2 | <u>-6</u> | -6 | <u>,</u> | -2 | -6 | | 7 1 | Upper-
surface
position,
x/c | 0.091
.185
.288
.395
.492 | 0.136
.009
016
063
110 | 0,211
.066
.044
004
061 | 0.157
.031
001
048
100 | 0.109
021
050
090
141 | 0.142
.013
021
063
112 | 0.257
.130
.081
.030
030 | 0.230
.085
.041
006
066 | 0.164
.034
005
052
302 | 0.110
022
052
089
137 | 0.060
064
093
126
174 | 0.180
.092
.010
033
089 | 0.246
.118
.069
.018
.018 | 0.186
.057
.015
034
082 | 0.143
.012
094
065
125 | 0.099
038
068
104
128 | 0.033
069
117
144
190 | 0.207
.082
.041
009
066 | 0.159
.048
.010
038
096 | 0.090
090
092
094
137 | 0.062
044
074
110
153 | 0.194
.021
.014
077
108 | | | lower-
surface
position,
x/o | 188
188
188
188
188
188
188
188
188
188 | 127
173
232 | 156
187
199
 | 102
149
168
 | 051
121
145
 | 076
129
172

215 | 180
217
240
 | 142
176
212
267 | 086
131
171
242 | 032
093
119
197 | .012
061
082
165 | 089
148
168
231 | 180
232
250
311 | 098
160
205
267 | 048
125
173
240 | .029
070
193
205 | .074
009
065
167 | 157
202
235
283 | 118
177
224
264 | 017
139
178
232 | .012
084
122
188 | 078
158
202
 | Figure 1.- Pressure model of supersonic aircraft configuration tested in the Langley 4- by 4-foot supersonic tunnel. Figure 2.- Details of model of supersonic aircraft configuration. Dimensions in inches unless otherwise noted. Figure 3.- Installation of pressure model of supersonic aircraft configuration tested in the Langley 4- by 4-foot supersonic tunnel. Figure 4.- Schematic diagram of horizontal tail. Dimensions in inches unless otherwise noted. NACA RM L51L17 Figure 5.- Variation with angle of attack of point downwash angle on the 15-percent constant chord line. Figure 5.- Concluded. Figure 6.- Variation with angle of attack of area downwash angle. Figure 7.- Span-loading curves for the strip between the 15- and 45-percent constant chord lines on the horizontal tail. Figure 8.. Sample evaluation of an area downwash angle for the complete model at $\alpha = 4^{\circ}.$ Figure 9.- Comparison of variation of downwash angle with angle of attack for various analyses. ECURITY INFORMATION NASA Technical Library 3 1176 01436 9129